
CIS 4004: PHP – Part 5 – Form Handling Page 1 Dr. Mark Llewellyn ©

CIS 4004: Web-Based Information Technology

Spring 2011

Introduction to PHP – Part 5 – Form Handling

Department of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cis4004/spr2011

CIS 4004: PHP – Part 5 – Form Handling Page 2 Dr. Mark Llewellyn ©

Form Handling In PHP

• This set of notes will focus on handling forms in PHP. If

you need a refresher on generating forms and the various

XHTML elements that might appear in a form, I suggest you

go back and review the XHTML notes Advanced XHTML &

CSS – Tables And Forms that we covered earlier in the

course.

• What we want to do here is focus on the PHP side of things

and not the XHTML side.

• Recall in the earlier set of notes that when we created a form,

the action attribute simply caused an email to be sent to the

address specified by the action attribute. What we want to do

here though is cause a PHP script to be executed and the data

from the form made available to the script.

http://www.cs.ucf.edu/courses/cis4004/spr2011/Advanced XHTML & CSS - Tables And Forms.pdf
http://www.cs.ucf.edu/courses/cis4004/spr2011/Advanced XHTML & CSS - Tables And Forms.pdf
http://www.cs.ucf.edu/courses/cis4004/spr2011/Advanced XHTML & CSS - Tables And Forms.pdf
http://www.cs.ucf.edu/courses/cis4004/spr2011/Advanced XHTML & CSS - Tables And Forms.pdf
http://www.cs.ucf.edu/courses/cis4004/spr2011/Advanced XHTML & CSS - Tables And Forms.pdf
http://www.cs.ucf.edu/courses/cis4004/spr2011/Advanced XHTML & CSS - Tables And Forms.pdf
http://www.cs.ucf.edu/courses/cis4004/spr2011/Advanced XHTML & CSS - Tables And Forms.pdf
http://www.cs.ucf.edu/courses/cis4004/spr2011/Advanced XHTML & CSS - Tables And Forms.pdf
http://www.cs.ucf.edu/courses/cis4004/spr2011/Advanced XHTML & CSS - Tables And Forms.pdf
http://www.cs.ucf.edu/courses/cis4004/spr2011/Advanced XHTML & CSS - Tables And Forms.pdf
http://www.cs.ucf.edu/courses/cis4004/spr2011/Advanced XHTML & CSS - Tables And Forms.pdf
http://www.cs.ucf.edu/courses/cis4004/spr2011/Advanced XHTML & CSS - Tables And Forms.pdf
http://www.cs.ucf.edu/courses/cis4004/spr2011/Advanced XHTML & CSS - Tables And Forms.pdf
http://www.cs.ucf.edu/courses/cis4004/spr2011/Advanced XHTML & CSS - Tables And Forms.pdf
http://www.cs.ucf.edu/courses/cis4004/spr2011/Advanced XHTML & CSS - Tables And Forms.pdf
http://www.cs.ucf.edu/courses/cis4004/spr2011/Advanced XHTML & CSS - Tables And Forms.pdf

CIS 4004: PHP – Part 5 – Form Handling Page 3 Dr. Mark Llewellyn ©

Form Handling In PHP

• Depending on what method was used to submit the form data to

the PHP script (either GET or POST), PHP has two superglobal

arrays, called $_GET and $_POST, that will be used to store the

data contained in the form.

• $_GET and $_POST are associative arrays that contain, as key

values, the names of the form elements as specified by their name

attribute and their associated values as submitted by the user.

• You may recall that we saw an example of this in the introductory

set of PHP notes. That example is duplicated on the next two

pages to refresh your memory.

Note: The term superglobal refers to variables that are generated by the PHP and are always in

scope. This means that regardless of where you are in a PHP script, whether it be inside a function

or elsewhere, a superglobal variable is always available without needing to use the global statement

to bring the variable into the current scope.

CIS 4004: PHP – Part 5 – Form Handling Page 4 Dr. Mark Llewellyn ©

Form Handling In PHP

XHTML document

CIS 4004: PHP – Part 5 – Form Handling Page 5 Dr. Mark Llewellyn ©

Form Handling In PHP

PHP script

CIS 4004: PHP – Part 5 – Form Handling Page 6 Dr. Mark Llewellyn ©

Form Handling In PHP

• For reasons of internationalization, get has been deprecated

as a value for the method attribute in XHTML form

elements. So we will focus exclusively on the post value

for the method attribute and thus the $_POST superglobal

array.

• In earlier versions of PHP (those prior to 4.1.0), PHP created,

by default, standard variable names to represent the values

contain within the superglobal arrays. Current versions, by

default, do not enable this property for security reasons. It is

still possible to turn this behavior on by setting the

register_globals directive to on in the PHP

configuration file (php.ini), it should be discouraged.

CIS 4004: PHP – Part 5 – Form Handling Page 7 Dr. Mark Llewellyn ©

Form Handling In PHP

• A safer approach to this is to use the import_request_variables()

function. This function will create global-scope variables for the

values stored in the relevant superglobal arrays.

• The syntax for this function is:

import_request_variables($types [, $prefix])

• Where $types represents a string indicating the types of

variables to import and should consist of any combination (not

case sensitive) of the letters P, G, and C. These letters represent

$_POST, $_GET, and $_COOKIE, respectively. The second

optional parameter, $prefix, if provided, should be a string

representing what to prefix to the start of every variable created.

CIS 4004: PHP – Part 5 – Form Handling Page 8 Dr. Mark Llewellyn ©

Form Handling In PHP

• Note, that while this function is safer than using the

register_globals configuration directive, it does not

protect you from the security risks associated with working with

user data. It is always recommended that data received from the

user be sanitized before use.

• It is also important to note that the

import_request_variables() function imports

variables into the global scope only. Therefore, it should never

be used from within a function.

• An example of the import_request_variables()

function is shown on the next page.

CIS 4004: PHP – Part 5 – Form Handling Page 9 Dr. Mark Llewellyn ©

Form Handling In PHP

CIS 4004: PHP – Part 5 – Form Handling Page 10 Dr. Mark Llewellyn ©

Securing Hidden Elements

• Take a look at the following example (which does use a GET

method value).

• This script creates a time-sensitive form. If the user does not

click the submit button within 2 minutes of starting the form in

their browser, the form will be considered invalid.

• Basically, a hidden field is used to store the time when the form

is first displayed to the user, when the user clicks the submit

button to submit the form, the PHP script checks the current time

and determines if more than 2 minutes has elapsed. If so the a

message is displayed indicating that the form is invalid.

• The XHTML document is on page 11 and the PHP script is on

page 12.

CIS 4004: PHP – Part 5 – Form Handling Page 11 Dr. Mark Llewellyn ©

Securing Hidden Elements

CIS 4004: PHP – Part 5 – Form Handling Page 12 Dr. Mark Llewellyn ©

Securing Hidden Elements

CIS 4004: PHP – Part 5 – Form Handling Page 13 Dr. Mark Llewellyn ©

Securing Hidden Elements

In
 tim

e

CIS 4004: PHP – Part 5 – Form Handling Page 14 Dr. Mark Llewellyn ©

Securing Hidden Elements

• One of the reasons the get method value is a potential security problem

is that it is possible for a somewhat savvy user of your site to send a

false time value via the query string that is appended to the URL which

invokes the PHP script.

• Notice on the previous page that I printed the time value out. This

time value is appended to the URL (called a query string) and the URL

would look like:

http:// … process time.php?time=1302636166

• For the case where the user waited too long to submit, what they could

have done was submitted a URL like the one below which explicitly

sets the time to be only 20s greater than the time in the query string:

http:// … process time.php?time=1302636186

CIS 4004: PHP – Part 5 – Form Handling Page 15 Dr. Mark Llewellyn ©

Securing Hidden Elements

• While the previous example used the $_GET superglobal and

illustrated the vulnerability of the method, fear not, for there are

better ways to secure the hidden elements of your forms and

protect them from a malicious user.

• The secret to data validation in this case is the MD5 algorithm.

This algorithm is used to create a message digest (a sort of

digital fingerprint) of the data provided to it.

• MD5 stands for Message-Digest algorithm 5. This is a widely

used cryptographic hash function that uses a 128-bit (16-byte)

hash value. MD5 was “cryptographically broken” in 2007 and

is no longer considered safe for applications like SSL and digital

signatures, but it will still suffice for our application here.

CIS 4004: PHP – Part 5 – Form Handling Page 16 Dr. Mark Llewellyn ©

Securing Hidden Elements

• Like the fingerprints found on a person, the digital fingerprint generated

by the MD5 algorithm is unique to the string that it represents.

• The MD5 algorithm is not collision resistant, so there is a small chance

(1 in 3.40x1038) that two strings will produce an identical fingerprint, for

all practical purposes they will be unique. However, it is a predictable

algorithm in that the same string always produces the same fingerprint.

• In PHP the MD5 algorithm is implemented by the md5() function,

which has the following syntax:

md5($string);

• Where $string represents the string to generate the fingerprint for.

The function returns a 32-character fingerprint based on the data in
$string.

CIS 4004: PHP – Part 5 – Form Handling Page 17 Dr. Mark Llewellyn ©

Securing Hidden Elements

• How does the MD5 algorithm help in this case? By creating

digital fingerprint values for each hidden form element in your

document and then checking those fingerprint values when the

form is submitted, you can be confident that the data submitted

was actually valid.

• When creating an MD5 fingerprint for this sort of purpose, its

important to remember that one of the major benefits of this type

of algorithm can also be its downfall. Because the algorithm is

completely predictable, simply using some combination of the

provided $name and $value parameters could be hazardous.

• The example on the following page illustrates this, with two calls

to the md5() function using the same string, it produces the

same digital fingerprint.

CIS 4004: PHP – Part 5 – Form Handling Page 18 Dr. Mark Llewellyn ©

Securing Hidden Elements

CIS 4004: PHP – Part 5 – Form Handling Page 19 Dr. Mark Llewellyn ©

Securing Hidden Elements

• For the MD5 fingerprint to be truly unique, a value completely

unknown to the outside user must be included in the creation of

the digital fingerprint.

• The following example illustrates this, by again creating a digital

fingerprint for the same string twice, but each time with a

different additional string appended to the string.

• The additional string would be defined using a constant in PHP

let’s call one of them PROTECTED_KEY, and the other one

PROTECTED_STRING. Recall that constants are created using

the PHP define statement.

• Notice now, that the two identical strings produce different

digital fingerprints.

CIS 4004: PHP – Part 5 – Form Handling Page 20 Dr. Mark Llewellyn ©

Securing Hidden Elements

CIS 4004: PHP – Part 5 – Form Handling Page 21 Dr. Mark Llewellyn ©

Basic Form Processing And Validation

• In the simplest sense, form validation and processing is nothing

more than working with the appropriate superglobal array

($_GET or $_POST) to do something in your PHP script.

• However, for a form of any complexity, often a considerable

amount of effort goes into the validation of the data coming in

from the form.

• For anything beyond the most elementary validation, usually all

form validation is done via regular expressions.

• The example on the next page illustrates basic form validation

using a regular expression.

CIS 4004: PHP – Part 5 – Form Handling Page 22 Dr. Mark Llewellyn ©

XHTML document

CIS 4004: PHP – Part 5 – Form Handling Page 23 Dr. Mark Llewellyn ©

PHP script

CIS 4004: PHP – Part 5 – Form Handling Page 24 Dr. Mark Llewellyn ©

CIS 4004: PHP – Part 5 – Form Handling Page 25 Dr. Mark Llewellyn ©

Basic Form Processing And Validation

• Because form validation is such an application-specific subject

(every situation is different in some aspect), there is little benefit

to discuss more about the general validation and processing of

forms.

• Instead, the approach we’ll take is to create a form-

processing/data validation architecture that is general enough to

use on any form without sacrificing flexibility.

• We’d also like to be able to separate the validation related code

from the presentation related code. To this end, we’ll develop

three different files, the XHTML front-end form, and two PHP

scripts on which is responsible for validating the form and the

second which is responsible for validating the user-supplied data.

CIS 4004: PHP – Part 5 – Form Handling Page 26 Dr. Mark Llewellyn ©

Basic Form Processing And Validation

• I’ve named the files I created for this as follows:

big form example – frontend.html

formvalidation.php

userdefinedvalidation.php

• To create such generic form processing scripts will require some

fairly advanced PHP concepts that we’ll introduce along the

way.

• The form validation script works through a combination of

hidden form elements and dynamic functions calls. As we’ve

already dealt with hidden form elements, we’ll take our first

aside and look at dynamic functions in PHP.

CIS 4004: PHP – Part 5 – Form Handling Page 27 Dr. Mark Llewellyn ©

An Aside – Dynamic Variables And Functions In PHP

• PHP supports both dynamic variables and dynamic functions.

• A dynamic variable is a variable whose actual identifier is

unknown until the script is executed. Think of a dynamic

variable as a “variable variable”.

• The syntax for defining a dynamic variable is:

${<expression>}

where expression represents any valid PHP expression that

evaluates to a value that follows the rules for what constitutes a

variable name.

• The example script on the next page illustrates a dynamic

variable.

CIS 4004: PHP – Part 5 – Form Handling Page 28 Dr. Mark Llewellyn ©

When this line is executed, the variable $my_var_name which

represents the string “$foo” is evaluated and the result is then

used to name the variable, hence $foo is incremented.

CIS 4004: PHP – Part 5 – Form Handling Page 29 Dr. Mark Llewellyn ©

An Aside – Dynamic Variables And Functions In PHP

• Dynamic functions are particularly useful in PHP for validating

form data as you’ll shortly see.

• To execute a function whose name you do not know until

runtime, you simply append a parameter list to the end of any

variable.

• PHP also supports dynamic function parameters, meaning that

the function definition does not define the number of parameters

that will be passed to it, rather it is dynamically determined.

• There are two built-in supporting functions for this in PHP:

func_num_args() returns the total number of arguments

passed to the current function and func_get_args() is used

to return an indexed array containing the values of each

parameter.

CIS 4004: PHP – Part 5 – Form Handling Page 30 Dr. Mark Llewellyn ©

CIS 4004: PHP – Part 5 – Form Handling Page 31 Dr. Mark Llewellyn ©

Basic Form Processing And Validation

• Getting back to the form processing side of things, the hidden

form elements will be used by the PHP script to provide both a

human-friendly description of each field element (useful when

an error occurs) and to identify those form fields that are

“required”.

• Specifically, for any given form element with a name of

<name>, the description of that field is defined as being stored

in a hidden element by the name of <name>_desc.

• The second hidden form element that the form-processing script

uses is called required and should contain a comma-separated

list of required elements.

CIS 4004: PHP – Part 5 – Form Handling Page 32 Dr. Mark Llewellyn ©

Basic Form Processing And Validation

• The value attribute of each visible element in the form should

be populated with it s associated value from the superglobal

($_POST).

• This is done primarily so that if the form is submitted and not

processed for whatever reason (an error has occurred) the user

will not have to retype the form.

• The next issue of concern is how to deal with validation errors

that may occur when the form is submitted. This will be handled

in the form validation script through two global variables:

$form_errors and $form_errorlist. When the form

validation script attempts to validate the data submitted to it,

upon an error, it creates these two dynamic variables.

CIS 4004: PHP – Part 5 – Form Handling Page 33 Dr. Mark Llewellyn ©

Basic Form Processing And Validation

• The first variable $form_errors is a Boolean value

indicating whether an error occurred during the validation, and

the second $form_errorlist is an array of error messages

that occurred during validation.

• How these variables are used in your script to display validation

errors to the user is subjective and can be done in many different

ways.

• What I’ve chosen to do in the example is to use a little script at

the top of the XHTML document that will display an unordered

list (bulleted list) of all the errors that occurred and need

attention from the user.

• The next two pages illustrate the complete XHTML front-end.

CIS 4004: PHP – Part 5 – Form Handling Page 34 Dr. Mark Llewellyn ©

CIS 4004: PHP – Part 5 – Form Handling Page 35 Dr. Mark Llewellyn ©

CIS 4004: PHP – Part 5 – Form Handling Page 36 Dr. Mark Llewellyn ©

Basic Form Processing And Validation

• The next step is to deal with the validation of the form.

• I’ve divided the form validation script into three separate

functions: add_error(), _process_form(), and

validate_form().

• The function validate_form() does most of the work, with

the other two functioning as support or helper functions.

• The add_error() function uses the two dynamic variables

$form_errors and $form_errorlist. The function

itself is quite simple and simply adds errors when they occur to

the $form_errorlist. This function appears at the top of

the form validation script as seen on page 43.

CIS 4004: PHP – Part 5 – Form Handling Page 37 Dr. Mark Llewellyn ©

Basic Form Processing And Validation

• The main part of the form validation script is in the

validate_form() function. This function takes a single

parameter, which is a reference to the superglobal array to

validate. When executed, the function attempts to perform a

number of tasks in the interest of validating the data.

• During the course of this operation, if any validation errors

occur, validate_form() calls the add_error()

function with an appropriate error message and thus populates

the error variables.

• When executed, validate_form() starts by first processing

the required hidden field and checks to make sure that all

required fields are not empty (the user has supplied values for all

required fields).

CIS 4004: PHP – Part 5 – Form Handling Page 38 Dr. Mark Llewellyn ©

Basic Form Processing And Validation

• Following that check, the function attempts to process each

individual form element according to the following rules:

– If the element is named submit, required, or ends in _desc, it is

ignored.

– For all other elements, the function attempts to call the function
<name>_validate(), where <name> is the name of the current

element.

• Unless defined by the user, the <name>_validate()

functions do not exist. These function are your responsibility to

create to validate each individual form element (or at least the

elements you are concerned with validating).

CIS 4004: PHP – Part 5 – Form Handling Page 39 Dr. Mark Llewellyn ©

Basic Form Processing And Validation

• These functions should accept two parameters, the value submitted and

a description of the field taken from the <name>_desc element.

• These functions should return true if the submitted value is valid or

return an error message upon failure to validate the user supplied

value.

– For example, if you were validating a form element whose name attribute

is phone (for a phone number), then the following function would need to

be constructed:

function phone_validate($data, $desc) {

$regex = “/^\([2-9][0-9]{2}\)[2-9][0-9]{2}-[0-9]{4}/i”;

if preg_match($regex, $data) != 1) {

return(“The „$desc‟ field isn‟t valid!”);

}

return true;

}

CIS 4004: PHP – Part 5 – Form Handling Page 40 Dr. Mark Llewellyn ©

Basic Form Processing And Validation

• Assuming that the validate_form() function executes and

does not encounter any errors, it then calls the

_process_form() function.

• This function is designed to clean up any nonrequired form
elements (the _desc, submit, and required hidden elements)

and call the function process_form().

• As with the validation functions we just discussed, the
process_form() function must be defined by you and is

designed to allow you to actually perform whatever action was

desired after a successful validation. You might send an email, or

submit data to a database, or any number of actions.

• This function accepts a single parameter, an array of the submitted

data, and has no return value.

CIS 4004: PHP – Part 5 – Form Handling Page 41 Dr. Mark Llewellyn ©

Basic Form Processing And Validation

• If this function does not exist (i.e., you don’t’ create one), nothing will

happen to the submitted data upon a successful validation.

• In the example, I’ve simply printed out the data from the form, but I

put a commented line in to show how you might email the data to

yourself. The example function appears at the end of the script named

userdefinedvalidation.php shown beginning on page 47.

• Look at the markup and scripts for this application beginning on the

next page.

– big form example – frontend.html document – page 42

– formvalidation.php script – page 43

– userdefinedvalidation.php script – page 47

• The execution of these is shown beginning on page 49.

CIS 4004: PHP – Part 5 – Form Handling Page 42 Dr. Mark Llewellyn ©

CIS 4004: PHP – Part 5 – Form Handling Page 43 Dr. Mark Llewellyn ©

CIS 4004: PHP – Part 5 – Form Handling Page 44 Dr. Mark Llewellyn ©

CIS 4004: PHP – Part 5 – Form Handling Page 45 Dr. Mark Llewellyn ©

CIS 4004: PHP – Part 5 – Form Handling Page 46 Dr. Mark Llewellyn ©

CIS 4004: PHP – Part 5 – Form Handling Page 47 Dr. Mark Llewellyn ©

CIS 4004: PHP – Part 5 – Form Handling Page 48 Dr. Mark Llewellyn ©

CIS 4004: PHP – Part 5 – Form Handling Page 49 Dr. Mark Llewellyn ©

The XHTML front-end form

in its initial state.

CIS 4004: PHP – Part 5 – Form Handling Page 50 Dr. Mark Llewellyn ©

The XHTML front-end after

user has filled in the form, but

not yet clicked the send

button. All user supplied data

in this case is valid.

CIS 4004: PHP – Part 5 – Form Handling Page 51 Dr. Mark Llewellyn ©

As you can see in the script

on page 48, all I did to

“process” the form was print

out the data received from the

form. This is shown at the

top of the rendered page in

the user’s browser.

CIS 4004: PHP – Part 5 – Form Handling Page 52 Dr. Mark Llewellyn ©

Basic Form Processing And Validation

• If we modify the userdefinedvalidation() function so that

rather than echoing the form data back to the user, we send an

email, the function process_form() will look like the

following:

/* This function is called by validate_form() upon successful validation of the form. */

function process_form($data) {

$msg = "The form at {$_SERVER['PHP_SELF']} was submitted with these values: \n\n";

foreach($data as $key=>$val) {

$msg .= "$key => $val\n";

}

//print("The data from the form was:
");

//var_dump($data);

$from="My Form Example";

$headers = "From:" . $from;

mail("markl@cs.ucf.edu", "form submission", $msg, $headers);

echo "Mail Sent";

}

CIS 4004: PHP – Part 5 – Form Handling Page 53 Dr. Mark Llewellyn ©

As you can see this is the

user’s browser after they filled

in the form and clicked the

Send button. In the upper left

corner is the echoing of the

message that the email was

sent.

CIS 4004: PHP – Part 5 – Form Handling Page 54 Dr. Mark Llewellyn ©

My email showing the inbound

email and its contents from the

form.

